
1

CSE211

Computer Organization and Design

• General Register Organization
• Stack Organization
• Instruction Formats
• Addressing Modes



2

Major Components of CPU

• Storage Components 
             Registers 
             Flags 

• Execution (Processing) Components 
             Arithmetic Logic Unit(ALU) 
                     Arithmetic calculations, Logical computations, Shifts/Rotates 

• Transfer Components 
             Bus 

• Control Components 
             Control Unit



3

Processor Organization 

• In general, most processors are organized in one of 3 ways 

– Single register (Accumulator) organization 
• Basic Computer is a good example 
• Accumulator is the only general purpose register 

– General register organization 
• Used by most modern computer processors 
• Any of the registers can be used as the source or destination for 

computer operations 

– Stack organization 
• All operations are done using the hardware stack 
• For example, an OR instruction will pop the two top elements from the 

stack, do a logical OR on them, and push the result on the stack 



4

General Register Organization

MUXSELA { MUX } SELB

ALUOPR

R1
R2
R3
R4
R5
R6
R7

Input

3 x 8 
decoder

SELD

Load 
(7 lines)

Output

A bus B bus

Clock









8

Stack Organization

Stack 
� Very useful feature for nested subroutines, nested interrupt services 
� Also efficient for arithmetic expression evaluation 
� Storage which can be accessed in LIFO 
� Pointer:  SP 
� Only PUSH and POP operations are applicable

Stack Organization 
�Register Stack Organization 
�Memory Stack Organization 



Register Stack Organization
• The computers which use Stack-based CPU Organization are 

based on a data structure called stack.  
• The stack is a list of data words.  
• It uses Last In First Out (LIFO) access method which is the 

most popular access method in most of the CPU. 
• A register is used to store the address of the topmost element 

of the stack which is known as Stack pointer (SP).  
• In this organisation, ALU operations are performed on stack 

data.  
• It means both the operands are always required on the stack. 

After manipulation, the result is placed in the stack.





11

Memory Stack Organization

       - A portion of memory is used as a stack with a  
          processor register as a stack pointer 

       - PUSH: SP ← SP - 1 
               M[SP] ← DR 

       - POP: DR ← M[SP] 
               SP ← SP + 1  

       

Memory with Program, Data,  
 and Stack Segments

4001
4000
3999
3998
3997

3000

Data 
(operands)

Program 
(instructions)

1000

PC

AR

SP
stack

- Most computers do not provide hardware to check stack overflow (full        
  stack) or underflow (empty stack)  � must be done in software 



12

Reverse Polish Notation 
Stack is very effective in evaluating arithmetic expressions 

• Arithmetic Expressions:   

                              A * B + C * D 

Polish Notation ( Prefix ) : Place operator before operand 

Reverse Polish Notation (Postfix)  :  Place operator after operand 

                                 AB*CD*+ 
1. (A*B)CD*+   
2. (A*B) (C*D) + 
3. (A*B) + (C*D) 

(A+B) * [C* (D+E)+ F]    �   AB+DE+C*F+*



13

Reverse Polish Notation 

A + B Infix notation 
+ A B Prefix or Polish notation 
A B + Postfix or reverse Polish notation

     - The reverse Polish notation is very suitable for stack  
manipulation • Evaluation of Arithmetic Expressions

 Any arithmetic expression can be expressed in parenthesis-free Polish notation, 
including reverse Polish notation

(3 * 4) + (5 * 6)    ⇒      3 4 * 5 6 * +

• Arithmetic Expressions:  A + B

3 3 12 12 12 12 42
4 5 5

6
30

3 4 * 5 6 * +



14

Instruction Format

OP-code field - specifies the operation to be performed 

Address field -  designates memory address(es) or a processor register(s) 
Mode field      -  determines how the address field is to be interpreted (to  
    get effective address or the operand)

• The number of address fields in the instruction format depends on the internal             
 organization of CPU 
• The three most common CPU organizations: 

Single accumulator organization: 

 ADD X                 /* AC ← AC + M[X]  */ 
General register organization: 
 ADD R1, R2, R3     /* R1 ← R2 + R3  */   
    ADD R1, R2                 /* R1 ← R1 + R2  */  
 MOV R1, R2                 /* R1 ← R2  */   
    ADD R1, X                 /* R1 ← R1 + M[X]  */ 
Stack organization: 
 PUSH X                 /* TOS ← M[X]  */   
    ADD 

• Instruction Fields



15

Three & Two Address Instruction
• Three-Address Instructions 
 Program to evaluate  X = (A + B) * (C + D) : 

  ADD R1, A, B    /*  R1 ← M[A] + M[B] */   
          ADD R2, C, D    /*  R2 ← M[C] + M[D] */   
          MUL X, R1, R2    /*  M[X] ← R1 * R2  */ 

   - Results in short programs  
     - Instruction becomes long (many bits) 

• Two-Address Instructions 
  Program to evaluate  X = (A + B) * (C + D) : 

  MOV    R1, A               /* R1 ← M[A]           */ 
  ADD     R1, B               /* R1 ← R1 + M[A]  */ 
  MOV    R2, C               /* R2 ← M[C]           */ 
  ADD     R2, D               /* R2 ← R2 + M[D]  */ 
  MUL     R1, R2             /* R1 ← R1 * R2      */ 
  MOV     X, R1               /* M[X] ← R1           */ 
                                                 -most common in commercial computer 



16

One Address Instruction

• One-Address Instructions
- Use an implied AC register for all data manipulation
- Program to evaluate  X = (A + B) * (C + D) :

LOAD    A           /*  AC ← M[A]    */ 
ADD      B           /*  AC ← AC + M[B]  */ 
STORE   T            /*  M[T] ← AC    */ 
LOAD    C           /*  AC ← M[C]    */ 
ADD      D           /*  AC ← AC + M[D] */ 
MUL      T            /*  AC ← AC * M[T] */ 
STORE   X           /*  M[X] ← AC    */



17

Zero Address Instruction
• Zero-Address Instructions

- Can be found in a stack-organized computer

- Program to evaluate  X = (A + B) * (C + D) :

PUSH A /*  TOS ← A */     
PUSH B /*  TOS ← B */      
ADD  /*  TOS ← (A + B) */     
PUSH C /*  TOS ← C */     
PUSH D /*  TOS ← D */      
ADD  /*  TOS ← (C + D) */      
MUL  /*  TOS ← (C + D) * (A + B)  */   
POP X /*  M[X] ← TOS */





19

Data Transfer and Manipulation

•Instruction set of different computers differ from each other mostly in  
   way the operands are determined from the address and mode fields. 

The basic set of operations available in a typical computer are : 

� Data Transfer Instructions 

� Data Manipulation Instruction :  
                                  perform arithmetic, logic and shift operation 
� Program Control Instructions 

                                  decision making capabilities, change the path taken by the 
                                  program when executed in computer. 

  



20

Data Transfer Instructions

Load       LD 
Store         ST 
Move       MOV 
Exchange       XCH 
Input       IN 
Output       OUT 
Push       PUSH 
Pop       POP

Name             Mnemonic

• Typical Data Transfer Instructions

Move data from one place in computer to another without changing 
the data content 

Most common transfer : processor reg -memory,  processor reg -I/O,  
                                            between processor register themselves





22

Data Transfer Instructions

Direct address LD  ADR AC ← M[ADR] 
Indirect address LD  @ADR AC ← M[M[ADR]] 
Relative address LD  $ADR AC ← M[PC + ADR] 
Immediate operand LD  #NBR AC ← NBR 
Index addressing LD  ADR(X) AC ← M[ADR + XR] 
Register LD  R1 AC ← R1 
Register indirect LD  (R1) AC ← M[R1] 
Autoincrement LD  (R1)+ AC ← M[R1], R1 ← R1 + 1 
Autodecrement                    LD  -(R1)            R1 ← R1 - 1, AC ← M[R1]

Mode
Assembly 
Convention Register Transfer

• Data Transfer Instructions with Different Addressing Modes 

Some assembly language conventions modify the mnemonic symbol to differentiate 
between the different addressing modes 



23

Data Maniplulation Instructions

• Three Basic Types:

�Arithmetic instructions 
�Logical and bit manipulation instructions 
�Shift instructions

These instruction performs operation on data and provide the computational 
 capabilities for the computer 



24

Data Manipulation Instructions

• Arithmetic Instructions

Name                                  Mnemonic
Increment                               INC 
Decrement                             DEC 
Add                                          ADD 
Subtract                                  SUB 
Multiply                                  MUL 
Divide                                      DIV 
Add with Carry                      ADDC 
Subtract with Borrow          SUBB 
Negate(2’s Complement)    NEG

Four basic arithmetic operations :    + - * /  





26

Data Manipulation Instructions

Clear           CLR 
Complement           COM 
AND           AND 
OR           OR 
Exclusive-OR           XOR 
Clear carry           CLRC 
Set carry           SETC 
Complement carry       COMC 
Enable interrupt           EI 
Disable interrupt           DI

Name                        Mnemonic

• Logical and Bit Manipulation Instructions

�Logical Instructions perform binary operations on string of bits stored in registers 
�Useful for manipulating individual/ group of bits 
� Consider each bit separately  

AND �Clear selected bits 
OR    �Set selected bits  
XOR �Complement selected bits  
 





28

Data Manipulation Instructions

Logical shift right         SHR 
Logical shift left         SHL 
Arithmetic shift right         
SHRA 
Arithmetic shift left         
SHLA 
Rotate right         ROR 
Rotate left         ROL 
Rotate right thru carry      
RORC 
Rotate left thru carry         
ROLC

Name                             Mnemonic

• Shift Instructions




